14:440:127— Introduction to Computers for Engineers
Notes for Lecture 05

Rutgers University, Spring 2010 Instructor- Blase E. Ur

1 (Pseudo)random Number Generation

In previous lectures, you’ve probably seen me create ‘random’ matrices whenever I want to demonstrate a concept
on the fly. How do you create "random” numbers in Matlab? There’s an app rand() function for that.

In short, Matlab lets you create matrices of pseudorandom numbers between 0 and 1. However, from this primitive,
you can generate numbers in any interval using some arithmetic.

rand(m,n) creates an m x n matrix of ‘random’ values and rand(s) creates an s x s matrix of ‘random’ values.
In technical terms, the values in this matrix are decimals uniformly distributed on the unit interval [0,1]. That
means the probability of getting 0.1 more or less equals the probability of getting 0.2, and so on.

Of course, sometimes we’ll want random values in an interval [0,b], where b is not 1. Well, let’s say we have
random numbers on the unit interval [0,1]. If we multiply those numbers by b, we’ll effectively stretch the interval
and now have random values randomly distributed on the interval [0,b]. Thus, b*rand(m,n) creates an m x n matrix
of decimals on the interval [0,b].

What if you instead wanted an m x n matrix of values uniformly distributed on the interval [a,b]? Well, first
notice that the size of this interval is (b-a), and thus we use the trick above. (b-a)*rand(m,n) creates a random value
on the interval [0,b-a]. Now, add a to the number you created, shifting the interval to the right on the number line
by a. Therefore, r = a + (b-a). *rand(m,n) returns an m x n matrix of decimals on the interval [a,b].

What if you instead wanted an m x n matrix of ‘random’ integers from 1 to x? Create an m x n matrix of
random decimals on the interval [0,x] and apply the ceiling function: r = ceil(x. *rand(m,n));. Pay close attention to
the fact that the original interval started at 0, but applying the ceil function rounds all of the numbers like 0.001 up
to 1, so the integers range from 1 to x.

Similarly, to create ‘random’ integers from A to B, we notice that r = ceil(x. *rand(m,n)) creates integers in the
range [1,x], noting that the size of this range is (x-1). Thus, to create a range of integers of size (B-A), we do r =
ceil((B-A+1).*rand(m,n)). Since we want to shift the beginning of this range from 1 to A, we shift by (A-1). Thus,
r = ceil((B-A+1).*rand(m,n))+(A-1) generates an m x n matrix of random integers between A and B, inclusive.

1.1 PSEUDOrandom

Note that this section is for students who are interested; I won’t test you on it.

So why have I been putting the word ‘random’ in quotes? Because these numbers aren’t actually random. They’re
generated with a Pseudorandom Number Generator (PRNG), deterministically (which means you’ll get the same
result each time you run the process). Pseudorandom means that they ‘look’ or ‘seem’ random (i.e. they meet some
statistical tests about the uniformity of their distribution, or perhaps it’s difficult, when given all of the numbers
generated so far, to guess the next number with more than chance probability, or perhaps the numbers are compu-
tationally indistinguishable from random numbers in a reasonable amount of time).

PRNGs begin with some ‘seed’” number, which tells the generator where to start. Of course, starting with the
same seed always gives the same sequence of “pseudorandom” numbers. In Matlab, you can specify the seed (and
the particular algorithm used) by typing rand(’seed’,z) (this uses a multiplicative congruential algorithm), or better,
rand(’state’,x) (which uses a superior algorithm), for integers x.

How does a PRNG work? One of the more famous and more flawed (the patterns are easy to find) algorithms
is a linear congruential generator. We’ll use the notation where x, 1 represents the n+1’th number in the sequence,
while x,, represents the x’th number in the sequence. x,+1 = (a * z, + ¢)modn, (recall that mod is similar to the
rem() function. If you’re interested in learning about better techniques, please feel free to come by office hours!

2 Loops

One of the biggest advantages of using a computer program to perform some task is that computer programs don’t
mind doing things over and over again. ”Loops” are the concept in programming that allow you to repeat similar
actions (or the same action) over and over. Matlab has two main kinds: for and while loops. Note, however, that
if you can perform some task without using loops, for instance by using matrix functions, use the alternate way. In
Matlab, built-in functions and matrix tasks are pre-compiled and optimized, which means they generally run faster
than if you had written them as loops. We’ll see this in action next week. However, sometimes, loops are unavoidable.

Loops implement iterative processes, which means processes that repeat over and over. Each repetition, or loop,
through some task is called an iteration.

3 For Loops

Sometimes, you’ll know exactly how many times you need to perform some action. Take the following example:
”Display HELLO 15 times.” This would be equivalent to writing:

disp(’HELLO?)
disp(’HELLO’)
disp(’HELLO?)
disp(’HELLO’)
disp (’HELLO’)
disp(’HELLO’)
disp(’HELLO’)
disp(’HELLO?)
disp(’HELLO’)
disp (’HELLO’)
disp(’HELLO’)
disp(’HELLO’)
disp(’HELLO?)
disp(’HELLO’)
disp(’HELLO’)

It would be pretty lame to type out (or even cut and paste) the same thing that many times. Instead, you can
use what’s called a FOR LOOP, which lets you repeat an action a specified number of times. A for loop takes the
following form:

for VARIABLE_NAME = VECTOR_OF_VALUES
STATEMENTS

end

For our first example, let’s write the following;:

for x = 1:15
disp(’HELLO’)
end

In this example, the variable z will be our counter. Normally in Matlab, you’d think that the variable x now
contains a vector of 15 elements. However, this is NOT the case since we’re writing this statement as for x = 1:15.
What a for loop does is first set the variable z to be 1, and 1 only. It will then execute the statement disp(’Hello’),
get to the end statement, and LOOP back up to the top of this loop. Now, z will be set equal to 2, and Matlab will
repeat the loop. This means that it will execute disp(’Hello’), get to the end statement, and LOOP back up to the

top of this loop yet again. This process will continue until z is set equal to 15, executes disp(’Hello’), hits the end
statement, and moves on with the program. Phew!

Now, what if we instead wanted to print out the numbers 1 through 15 in the form ”The number is
X.” Notice that this is equivalent to writing:

fprintf (’The number is %.0f\n’,1)
fprintf (’The number is %.0f\n’,2)
fprintf (’The number is %.0f\n’,3)

fprintf (’The number is %.0f\n’,15)

When you're first starting to learn loops, I strongly advise you to first think about the process you want to im-
plement and then try writing Matlab code that would implement the first few iterations (steps) of that process.
Likely, these first few lines will be very similar. Identify what, if anything, changes from line to line, and replace
that part with a variable.

In this case, the key is to notice that everything in the loop stays the same except for the last number. So,
let’s replace it by a variable, say X. Thus, we can write fprintf (’The number is %.0f\n’,X) . Now, we have to
repeat this line, but change the value of X each time— and that’s exactly what a for loop does! Thus, to write the
above example as a loop, write:

for X = 1:15
fprintf (’The number is %.0f\n’,X)
end

The key points here are to notice that the variable we define for the loop, X, takes on a single value at a time,
starting at 1 and going to 15 (incrementing by 1 each time). For each of these different values of X, the fprintf
statement is repeated. This loop variable is sometimes referred to as the loop index. The for loop must begin with
the word for, and end with the word end.

In this next section, we’ll go through a bunch of examples of for loops. Of course, note that these are just a
few of the many, many types of loops you can write.

3.1 For Loop- Copying A Vector

For this example, we’ll assume that there exists a vector V1, and you want to make a copy of this vector
and save it in V2. We'll also assume that we forgot how to just type V2 = VI, so therefore we’d need to write
this as a loop. First, let’s come up with our algorithm (process) for doing this.

First, we’ll look up the first element of V1, and save it as the first element of V2. Then, we’ll look up the sec-
ond element of V1, and save it as the second element of V2. We’ll continue this until we copy the last element of
V1 into the last element of V2. But wait— how do we know when we’ve reached the end? Well, before we begin this
process, let’s determine how many elements there are in V1 using the length function. If length returns 125, well,
then we’ll be repeating this process 125 times. Of course, we can just save the length as a variable. Ok, now let’s
try writing this process line by line:

howMany = length(V1);
V2(1) = V1(1);

V2(2) = V1(2);
V2(3) = V1(3);
V2(4) = V1(4);

V1(howMany-1) ;

V2(howMany-1) =
= V1(howMany) ;

V2 (howMany)

Notice that each of these lines follows the pattern V2(X) = V1(X), and we're doing this starting at X = 1, then X
= 2, and continuing all the way until X = howMany (the variable storing the number of elements). Well, we’ve just
defined our loop:

howMany = length(V1);

for X = 1:howMany % OR for X = 1:length(V1)
V2(X) = V1i(X);

end

3.2 For Loop- Summing A Vector

For many loops, we’ll want to keep a ”"running total” that sums a process. For instance, we could write Matlab code
that works exactly the same as the sum function for a vector V. First, we’d need to determine how many elements
are contained in a vector. Then, we’d want to start keeping track of our total, initially saying that it’s 0 since we
need to know from where to start counting. Each time we look at an element in the vector V, we’ll add it on to our
running total. Trying to write this process line by line, we could do:

% assume the vector V has already been defined
howMany = length(V);

total = O;

total = total + V(1);

total = total + V(2);

total = total + V(3);

total = total + V(howMany-1);
total = total + V(howMany);
disp(total)

Hopefully, you see the pattern. Therefore, let’s write our loop as:

% assume the vector V has already been defined
total = 0;
for k = 1:length(V)
total = total + V(k);
end
disp(total)

Note that if you hadn’t initialized total, Matlab wouldn’t have known where to start counting. Even worse, to-
tal may have been defined earlier in the program, leading you to some pretty crazy and unexpected results.

3.3 For Loop- Counting

Now let’s say that we instead wanted to count the number of 3 digit prime numbers. In this case, we’ll keep
a running count of how many primes we’ve seen.

Let’s use the following process. Loop through each 3 digit number (100 to 999). For each of these numbers,
check if the number is prime (using the isprime function). If it is indeed a prime number, add 1 to our count. If it’s
not, don’t change our count. Of course, we need to start off by setting the count equal to 0. Here’s how this loop
would work:

% start off our count at O
% go through each 3 digit number

yA if the current number is prime
% increase our count by 1
yA end

% end

% display the final count

count = 0;
for x = 100:999
if (isprime(x))
count = count + 1;
end
end
disp(count)

3.4 For Loop- Sum Primes Method 1

Let’s say we wanted to sum all 1, 2, and 3 digit prime numbers. To accomplish this, we could loop through
all 1, 2, and 3 digit integers, and test if each is a prime number (using the isprime function). If (and only if) a
particular value is prime, then we’ll add it on to our running total. Note that if a particular number is not prime,
we don’t do anything other than advancing to the following number.

total = 0;
for k = 1:999
if (isprime(k))
total = total + k;
end
end
disp(total)

3.5 For Loop- Sum Primes Method 2

One interesting difference between Matlab and other programming languages is that it uses a vector to indicate
what values a loop variable should take. Thus, if you simply write that = equals an arbitrary vector rather than
a statement like z = 1:100, your program will work fine. Here, we rewrite the previous example for summing all
1, 2, and 3 digit prime numbers by first creating a vector of all the prime numbers from 1 to 999, and simply
looping through those values:

total = O;

for k = primes(999)
total = total + k;

end

disp(total)

3.6 For Loops- Finding The Maximum in a Vector

In the previous few examples, we've seen cases where we’ve kept a running total or running count as we’ve gone
through our loop. However, sometimes, you’ll instead want to keep a ”running maximum,” or something along those
lines. For instance, let’s say we wanted to find the largest value in some vector V.

Let’s first define our process. At all times, we’ll keep track of the "maximum so far,” which we’ll save in the
variable mazvalue. We’ll loop through each element of the vector, and for each of these elements, compare it to our
mazvalue so far. If the number we’re currently looking at is bigger than mazvalue, then that should replace mazvalue
with the current element of V since that’s the new largest number we’ve seen so far. If it’s not bigger than mazvalue,
then don’t do anything. Thus, at the end of our loop, the variable mazvalue will contain the overall maximum value,
since that will be the largest value we’ve seen so far, and we’ll have seen every element of the vector.

There’s one complication: when we try and compare the first element of the matrix to mazvalue, the variable
mazvalue won’t have a value yet and we’ll thus get an error message. To fix this, let’s initially set mazvalue to
be -inf (negative infinity) since every value is bigger than negative infinity. Similarly, if we were trying to find the
minimum of a vector, we’d want to set our initial value to +inf, since every value is smaller than positive infinity.

% assume the vector V has already been defined
% set maxvalue to be -inf
% loop through each element of V

% if the current element is bigger than maxvalue
yA replace maxvalue with the current element
% end

% end

% display the maximum value

% assume the vector V has already been defined
maxvalue = -inf;
for j = 1l:length(V)

if(V(j) > maxvalue)

maxvalue = V(j);

end
end
disp(maxvalue)

3.7 For Loop- Flip A Vector Left-Right

It’s important to realize that sometimes you have to do tricky computations with the loop variable. For instance,
what if you wanted to flip a vector VI horizontally (from left to right) and save it as V2... and the fliplr function
did not exist! Well, for a 5 element vector, we’d want to write:

% assume V1 exists and has 5 elements
V2(5) = V1(1);
V2(4) = V1(2);
V2(3) = V1(3);
V2(2) = Vi(4);
V2(1) = V1(5);

Notice that we usually find the pattern in the first few statements we write, and replace whatever is changing
by a variable. Here, there are two things changing, and they are changing in opposite directions. Who you gonna
call?

Well, we're actually lucky since the two parts of these lines that are changing are always changing by the same
amount. Thus, if we change the right-hand side of these statements to be V1(z), then we can write the left-hand
side as V2(6-z), which decreases at the same rate as the other side increases! Note that in general, this formula for
determining the index of the left-hand side is vectorLength + 1 - .

% assume the vector V1 exists and has an unknown number of elements
z = length(V1);
for x = 1:z
V2(z+1-x) = Vi(x);
end

3.8 For Loop- Making A Decision (isprime)

What if Matlab hadn’t defined a function like isprime? This isn’t unreasonable at all- many programming languages
DON’T define a similar function. How could you test primality? Remember that a prime number is evenly divisible
by only 1 and itself. Therefore, we can test whether some number X is evenly divisible by any number between 2
and X-1. If there does exist some number from 2 to X-1 that evenly divides the number, it’s composite. If there does
not exist such a ”factor”, then the number is prime. We’ll keep track of whether or not the number is prime in a
variable IsItPrime. At the end of our program, IsltPrime should be 1 (true) if the number is prime, and 0 (false) if it’s
not. (Of course, note that we only really have to test up to X/2 since there can’t be any factors between X/2 and X-1).

A naive and TOTALLY INCORRECT approach to test whether some number X is prime would be to loop through

all numbers from 2 to X-1, and for each of these potential factors, to do the following:
e INCORRECT: If that potential factor evenly divides X, set IsItPrime to 0, or false
e INCORRECT: If that potential factor doesn’t evenly divide X, set IsItPrime to 1, or true.

Notice that this approach crashes and burns since we just need to see if one number evenly divides X to determine
if it’s composite. In this naive approach, we may find a number that evenly divides X, and thus set IsItPrime to
0. Then, if the next potential factor we test does not evenly divide X, we’ll reset IsltPrime to 1, which is not
correct (we already know it’s NOT prime). Thus, let’s assume it’s prime at the beginning. As we continue
through the loop, if we find any evidence to the contrary (i.e. a factor does evenly divide X), we’ll
permanently set IsItPrime to 0 since we’ve determined once and for all that X is not prime.

x = input(’Enter a number’);
IsItPrime = 1;
for (potentialFactor = 2 : (x/2))
if (rem(x,potentialFactor)==0)
IsItPrime = 0; % we’ve found a factor!
end
end
disp(IsItPrime)

4 Break and Continue

In the previous example for determining whether or not a number X is prime, once we find a factor that’s neither 1
nor X, we can stop searching since we now know that the number is composite. Testing any more potential factors
is a waste of time! In cases like these, you should use a command called break, which ”breaks” (or stops) the loop,
but doesn’t stop the program itself from running. To integrate break into the previous example, we could type:

x = input(’Enter a number’);
IsItPrime = 1;
for (potentialFactor = 2 : (x-1))
if (rem(x,potentialFactor)==0)
IsItPrime = 0; Y% we’ve found a factor!
break; Y stop the loop
end
end
disp(IsItPrime) % still displays even if break is used

Another command similar to break is continue. Whereas break stops the execution of a loop, continue stops the
current iteration (the current pass through the loop) and jumps to the top of the loop to continue looping with the
next value of the index. As a (kind of useless) example, the following loop will display 1,2,3, and 5, but not 4 (since
it will jump to the top of the loop and move on to 5):

for x = 1:5
if (x==4)
continue;
end
disp(x)
end

5 While Loops

While a for loop lets you repeat some segment of code a specified number of times, sometimes you’ll instead want
to continue looping a section of code until some condition is met. In these situations, you use a while loop. A while
loop repeats some segment of code until a particular condition is false. While the condition is true, Matlab will loop

through the code. Note that if the condition is initially false, a while loop will never loop through the code and will
just continue on with the Matlab program.

Conversely, if the condition is always true, the loop will go on forever. This is called an "infinite loop.” If you
accidentally cause an infinite loop (or if Matlab is just taking too long to perform some operation), hit Ctrl - C on
your keyboard (hit the two keys at the same time) to stop the current Matlab code!

Note that if the tested condition becomes false part way through an iteration (a pass through the loop), the particular
iteration will finish and the loop will not stop until the condition is checked again when the loop returns to the top.
Also note that, like for loops, the while loop requires that you type "end.” Here’s the syntax for a while loop:

while (CONDITION) 7% replace capitalized parts
STATEMENTS % replace capitalized parts

end

5.1 While Loop- Converting A For Loop
Essentially every for loop can be written as a while loop. This is a three step process:

e Notice that we need to initialize a loop variable (a while loop does not do this automatically). If our for loop
began for x = 1:2:15, we must state that = 1 initially, before our while loop begins.

e You must create a condition that is true while you want the loop to keep looping, and that becomes false when
you want the loop to stop. Usually, this is the upper (or lower) bound on your loop variable. In our example,
we’d want to keep looping while x is less than or equal to 15: z <=15.

e Finally, before each iteration of our while loop ends, we must increment our loop variable. Notice that a for
loop did that for us. Right before your end statement, you’ll likely place something like z = z+2 if you were
converting the above example.

Here’s this simple example, written as both a for loop and an equivalent while loop.

for x = 1:2:15
disp(x)
end

x =1; % STEP 1
while(x<=15) % STEP 2
disp(x)
x=x+ 2; Y% STEP 3
end

5.2 While Loop- Summing Integers

Of course, the power of a while loop isn’t evident from just converting a for loop. Rather, a while loop should be
used whenever you want to continue looping until some condition changes from true to false. For instance, let’s say
we wanted to find the smallest number N for which the sum of the integers 1 through N is a 4 digit
number. In this case, it makes sense to use a while loop.

Essentially, we want to keep a running total of the sum, and keep adding successively larger integers to it as long as
we haven’t gotten a 4 digit number yet. Thus, while our running total is less than 1000, we should continue looping

(this is our condition). Once the total passes 1000, our loop will stop because the condition is false.

Our process could be as follows:

e Initialize our running total (total) as 0.

e Start at 1. Since this is a while loop, we need to make our own variable to do this. Let’s call this variable 7.

e While our total is still less than 1000, keep increasing n (our current number) and adding it on to the total.

We can thus write our loop as follows:

total = 0;
n=1;
while(total<1000)

total = total + n;
n=mn+1;

end

disp(n-1)

Note that we do something kind of funny in the last line. We display n-1 as our answer, which is because once
we’ve added a number to our total to push our total over 1000, we then increase n by 1 before checking the condi-
tion. Thus, we’ve gone one place too far!

There’s an alternate way to write this loop that avoids that problem by switching the order of the statements
in the loop, but then we have to start at 0 instead:

total = O;
n=0;
while(total<1000)
n = nt+l;
total = total + n;
end
disp(n)

We also could have written this example in a for loop:
total = O;
for n = 1:inf

total = total + n;

if (total>1000)
break;
end
end
disp(n)

Note that it’s often helpful to run through loops by hand to understand how they work. Try making columns
for all of your variables, and run through the code one line at a time. Each time the value of a variable changes,
mark this on your paper in the correct column.

5.3 While Loop- User Input

The while loop is very useful when getting input from the user. Let’s say we wanted to, over and over again,
allow the user to input numbers as long as they’re entering positive numbers. We want to sum all
of these positive numbers that they’ve entered. However, once they enter a non-positive number, we
want to stop the loop (and not include that number in the sum).

Our strategy for a while loop could be that while the number they input is greater than 0 (our condition), to
add it to the running total and then ask for another number. Of course, before the loop starts, we’ll need to ask
them to input the first number. Otherwise, when we check our condition for the first time, z won’t exist:

total = 0;
x = input(’Enter a number’);
while (x>0)

total = total + x;

x = input(’Enter a number’)
end
disp(total)

5.4 For / While Loop- Twin Primes

In many cases, it’s possible to use either a while loop or a for loop (often adding counting variables to while loop
or adding break to a for loop) to solve a problem. Writing a loop that finds all 4 digit twin primes (numbers
separated by two that are both prime) is such a case.

for x = 1001:2:9997
if (isprime(x) & isprime(x+2))
fprintf (°%.0f and %.0f are both prime\n’,x,x+2)
end
end

x = 1001;
while (x<=9997)
if (isprime(x) & isprime(x+2))
fprintf(°%.0f and %.0f are both prime\n’,x,x+2)
end
X =x + 2;
end

Also note that you can solve this example without loops in Matlab:

x = 1001:2:9997;

twins = x(isprime(x) & isprime(x+2));

printout = [twins; twins+2]; % fprintf gets two elements from each column
fprintf (’%.0f and %.0f are both prime\n’,printout)

5.5 For / While Loop- Powers

In cases where a number changes, but not in an arithmetic sequence (i.e. finding the smallest integer N for
which 2V is greater than one million), while loops are key, unless you can write the problem arithmetically.
Here’s an example of each approach:

count 0;

total = 1;

while (total<=1000000)
total = total * 2;
count = count+1;

end

disp(count)

for x = 1:inf Y, Note that this is not a clean way to solve this problem

if (27x>1000000)
disp(x)
break

end

end

10

6 Nested Loops

You can also put loops (for or while) inside of each other, in what are called nested loops. These are very powerful,
especially when working with matrices. Here’s a first example of a nested loop so that you can see how the numbers
change:

for x = 1:3
for y = 1:2
fprintf (’x= %.0f and y= %.0f\n’,x,y)
end
end
This creates:
x= 1 and y= 1
x= 1 and y= 2
x= 2 and y= 1
x= 2 and y= 2
x= 3 and y= 1
x= 3 and y= 2

Note that the outer loop changes slowly, while the inner loop changes quickly.

6.1 Nested Loop- Convert a Matrix into a Vector

Having two variables, one changing more quickly than the other, is extremely useful when working with matrices.
Let’s say we wanted to create a vector V from a matrix M without using the colon operator. We could take the
following approach:

e Determine how many rows and columns are in the matrix using size.
e Create an empty vector V.
e Start on column 1 of the matrix. Loop through each row, adding that element onto the end of the vector.

e Then, move to column 2, 3, 4,... and repeat the process.

% Assume matrix M exists
[r c] = size();
v=1_[1;
for col = 1:c
for row = 1:r
V(end+1) = M(row,col);
end
end
disp(V)

6.2 Nested Loop- Printing Out Stars

Let’s say we wanted to print out the following pattern of stars, allowing the user to specify how many rows:

*
*kk

ok k
kK ok k

sk ok ok ok k

sk k ok ok ok ok
sk k ok ok sk ok

This situation lends itself perfectly to nested for loops. This is because we need to loop through one thing slowly
(which row we're on), and then inside of that slow loop, repeat something else (if we’re on row 1, print out 1 star; if
we’re on row 2, print out 2 stars; if we're on row 3, print out 3 stars).

11

Here’s our plan:
e Ask the user how many rows they want.
e Loop through each row, beginning with 1. Keep a variable R, containing which row we’re on.

e In each row, print out R stars. To do this, create a loop that prints out a single star, repeating this operation
R times.

e After we’ve printed out R stars, go to the next line using \n.

rows = input(’How many rows do you want?’);
for R = 1l:rows
for s = 1:R
fprintf (°*’);
end
fprintf(’\n’);
end

12

