
14:440:127– Introduction to Computers for Engineers

Notes for Lecture 04

Rutgers University, Spring 2010 Instructor- Blase E. Ur

1 2-D Plotting

Matlab has a number of functions built-in that allow you to plot graphs, making it quite easy to create
scientific reports using Matlab. The key idea is that Matlab uses vectors or matrices of numbers to specify
which points to plot.

1.1 X-Y Line Plots

X-Y Line Plots are the most basic types of plots. The key idea is that you must give Matlab two separate
(and equal size) vectors specifying the x and y points separately. If you ask Matlab to plot([1 2 3],[5 6 7])
, then the points (1,5), (2,6), and (3,7) are plotted. With the plot command, always be sure it has two
input vectors of equal size. The first vector is the set of all x points, and the second vector is the set of all
y points.
plot([1 2 3 4 5], [6 8 9 12 15])

The code above will plot the points (1,6), (2,8), (3,9), (4,12), and (5,15), and connect the points with a
line. The following graph is displayed:

Of course, it often doesn’t make sense to type in all of the x points and all of the y points by hand. Thus,
if you wanted to plot y = x3, you’re more likely to type the following set of commands. Note that you
first create a vector of all the x points, using either the colon operator or the linspace function. You then
perform mathematical operations on x to get y, usually with element by element (dot) operators like .*,
./, +, or -
x = linspace(0,20,100); % 100 points between 0 and 20
y = x.^3;
plot(x, y)

1.2 Function Plots

Using the plot command to plot x2, you needed to create a vector of x points using linspace, and then
calculate the y points using y = x.2. However, you can also create a ‘function plot,’ which obviates
creating those vectors. The fplot function takes a function (as a character string, in single quotes) and
vector containing the range for the x points as its inputs. Note that we’re taking a bit of a shortcut in the
way we specify the function; we’ll discuss this in the later lecture on symbolic math. The most important

1

change is that you should not use dot operations when specifying functions in this way.
fplot(’sin(x)’,[-2*pi,2*pi])
% note that sin(x) must be in single quotes
% -2pi,2pi is the interval for x.

2 Tools for All Plotting Functions

2.1 Titles, Labels, Grids

To start making your graph look nicer, you can add things like titles and labels for the axes. To add a title
to your graph, simply type title(’My First Graph’) right after you use the plot command. You must first
create the graph, and then you can change the title. To add a label to the x axis, just type xlabel(’My X
Axis’), and similarly type ylabel(’My Y Axis’) for the y axis. For the title and labels, be sure to put the
descriptions in single quotes since they are character strings. To add grid lines to your plot, type grid on.
After turning the grid on, you can turn it off again using the command grid off. By default, the grid is off.
x = linspace(0,20,100);
y = x.^3;
plot(x, y)
title(’X Cubed’)
xlabel(’X Points’)
ylabel(’Y Points’)
grid on

2.2 Changing Line Colors Like a MySpace Kid

You can also change the color of the lines in a graph, or even whether the line is solid, dashed, etc., using
an extra argument to the plot function. Rather than just typing plot(x,y), you can type something like
plot(x,y,’- -dg’). This command specifies that the lines in the plot should be dashed (- -), that all of the
points in the plot should be highlighted as diamonds (d), and that the line should be green (g). Here’s
what that looks like:

2

x = 1:5;
y = [6 8 9 12 15];
plot(x, y,’--dg’)

One interesting use of these supplements to the plot function is that you’re able to create a scatter plot
(displaying all of the points without any lines connecting them) with a call like plot(x,y,’x’), which
displays each point as an X.

2.3 Opening Multiple Windows of Graphs

If you run a plot command in Matlab, and then run another plot command later in your program, the first
plot will be overwritten and replaced by the second plot. However, if you instead want to have multiple
windows open, with just one plot in each window, execute the figure command before each plot command,
passing the number of the figure as the argument. The following code creates one figure, then creates a
second, and then overwrites the first:

figure(1)
plot(xpoints, ypoints)
figure(2)
plot(x,y)
figure(1) % go back and overwrite the first figure
plot(x,y)

2.4 Two Graphs, One Figure– Method One, and Legends

Rather than creating multiple figures, sometimes you want to plot multiple lines on one set of axes. There
are two methods to do this. The first is to specify multiple sets of x points and y points. Let’s say that we
have x points stored in x1 and x2, and y points stored in y1 and y2. The x1 and y1 points go together,
and the x2 and y2 points go together. In the following example, I use that method to graph two lines on
one set of axes. You’ll also notice that I was fancy and included a legend using the legend command. The
first character string I send to the legend command will be matched with the first line that’s plotted; the
second character string with the second line that is plotted, and so on.
x1 = 1:0.1:10;
x2 = 1.5:0.1:10;
y1 = 3*x1.^2;
y2 = 3.5*x2.^(1.5);
plot(x1,y1,x2,y2)
legend(’first line’, ’second line’)

3

2.5 Two Graphs, One Figure– Method Two

Rather than having one plot command with multiple sets of points, you can instead use the hold on com-
mand. Typing hold on indicates to Matlab that it should not overwrite the previous figure, but instead
just add additional lines to that figure. Once you type hold off, though, Matlab will overwrite the current
figure. Note that legends don’t work very well using this method, so if having a legend is essential to your
graph, use the first method. However, this method lets you have different kind of graphs in the same figure.

x1 = 1:0.1:10;
x2 = 1.5:0.1:10;
y1 = 3*x1.^2;
y2 = 3.5*x2.^(1.5);
plot(x1,y1)
hold on;
plot(x2,y2)
%%% later on
hold off;

2.6 Subplots

Sometimes, you’ll want to look at multiple graphs side by side in order to compare them. Matlab allows
you to do this using the subplot command. Before plotting a figure, you use the subplot command to
essentially create a grid of graphs (sets of axes) . There are three arguments to subplot : first, you indicate
the total number of rows of graphs; second, you indicate the total number of columns of graphs. This is
analogous to the way you consider the rows and columns of a matrix. Finally, you indicate which graph in
the subplot you will currently reference. The graphs in the subplot are numbered from left to right within
each row. Thus, the number system for a 2x3 subplot would be:
Graph 1 Graph 2 Graph 3
Graph 4 Graph 5 Graph 6

Here, we’ll use subplot to display the graphs of four powers of x next to each other:
x = linspace(0,10,100);
y1 = x;
y2 = x.^2;
y3 = x.^3;
y4 = x.^4;
subplot(2,2,1);plot(x,y1);title(’y=x’);
subplot(2,2,2);plot(x,y2);title(’y=x^2’);
subplot(2,2,3);plot(x,y3);title(’y=x^3’);
subplot(2,2,4);plot(x,y4);title(’y=x^4’);

4

2.7 Getting Input from a Plot- Click Here!

Sometimes, when you display a graph, you want the user to click on it (and then have your program find
out where they clicked). Use ginput, which is a function that allows you to get the coordinates of where
in a graph the user clicks. To force the user to click only once, you’d use [x y] = ginput(1). To instead
keep allowing the user to click until they hit return, instead use [x y] = ginput(). The coordinates that are
returned are based on the axes of the graph.

x = linspace(0,10,100);
y = x.^2;
plot(x,y)
[xclick yclick] = ginput(1);
fprintf(’The user clicked on the point (%f, %f)\n’,xclick,yclick)

2.8 Saving Plots

When a figure is displayed, you can simply go to file-save as, and then save the plot you’ve just created.
Be sure to change the file type to a common file format such as a .jpg file if you’re going to use the figure
outside of Matlab.

3 Histogram

Matlab also lets you create all sorts of other graphs; for instance, you can create a histogram using the hist
function. The hist function takes two arguments: the data set, followed by the number of bins (which, by
default, is 10).
hist([23 10 54 21 55 12 67])

There are also functions to make pie charts, box and whisker plots, and anything you ever wanted. Try
searching Matlab’s help feature for ”Specialized Plotting”.

5

4 3-D Plotting

Matlab also lets you plot in 3 dimensions. You can plot a single line running through 3-D space (using
plot3) by using 3 vectors (for x, y, and z), similar to the plot function. You can also plot surfaces, in which
every combination of x and y points has a z value, or height. Since we need to calculate the height (z) for
every combination of x and y, we need to use meshgrid to generate matrices of points. Then, we can use
the mesh or surf functions to plot the surface, or create a top-down view of the surface’s elevations using
pcolor or contour.

4.1 3-D Line Plot

The simplest plot is a line plot, which is often used when y and z vary based on x. Using the plot3
command, Matlab plots each (x,y,z) triplet and then connects those points. As with plot, the vectors of x
points, y points, and z points need to be the same size. Note: the x, y, and z points must be VECTORS.
For instance, you can create a corkscrew by typing the following:
x = linspace(0,30,100);
y=sin(x);
z=2*cos(x);
plot3(x,y,z)
grid on

4.2 3-D Surfaces

Whereas a 3-D line plot is essentially 2 variables (y and z) as a function of x, a 3-D Surface can be thought
of as 1 variable (z) as a function of x and y.

For every possible combination of x and y points, you need a value for z. Recall from Lecture 3 that
you use meshgrid to do this. For instance, if you wanted to plot some surface for x and y running from 0
to 10, first create a meshgrid as follows. (Note that we want a lot of points, so we use 0.1 as our spacing
for the meshgrid):
[x y] = meshgrid(0:0.1:10, 0:0.1:10);

4.3 Mesh

Now, you can take your meshgrid, perform element by element calculations on it, and then use the mesh
function to create a wire-mesh 3-D surface:
[x y] = meshgrid(-10:10, -10:10);
z = -x.^2-y.^2;
mesh(x,y,z)

6

4.4 Surf

Whereas the mesh function creates essentially a wire-mesh display of a surface, the surf function colors in
the grid for you based on the elevation of z. Essentially, all points with the same z value will be the same
color. To repeat the last example as a surf plot, just do:
[x y] = meshgrid(-10:1:10, -10:1:10);
z = -x.^2-y.^2;
surf(x,y,z)

4.4.1 Colormaps for your Surface

If you really want to pimp your Matlab graphs like a 13 year old’s MySpace page, you can use the colormap
command for a surface to specify a new colormap, which is essentially a mapping of z values to colors. In
addition to typing colomap jet, which is the default, you can replace jet with autumn, spring, summer,
winter, bone, colorcube, cool, copper, flag, hot, hsv, pink, prism, white. Enjoy.

4.5 Pseudo Color Plot

If you’d rather see a 2-D overhead representation of 3-D data where the z value is just represented by a
color, you can use the pcolor (short for pseudocolor) function:
[x y] = meshgrid(-10:1:10, -10:1:10);
z = -x.^2-y.^2;
pcolor(x,y,z)

% second picture

[x y] = meshgrid(-20:20,-20:20);
z = sin(x.*y) + 1./x;
pcolor(x,y,z); title(’sin(xy) + 1/x’)

7

4.6 Contour Plot

Instead, if you want to just display lines that connect all of the points at the same z elevation, you can
use the contour function. The lines drawn are known as contour lines or equipotential lines (if you work
in EE/CE).
[x y] = meshgrid(-10:1:10, -10:1:10);
z = -x.^2-y.^2;
contour(x,y,z)

5 Interpolation

Oftentimes when you gather data, you’ll want to estimate the values of intermediate points, which are
points in between your measured data points. To do this in Matlab, you use interpolation, those methods
that draw lines or curves between measured (or observed) points so that you can estimate intermediate
values.

5.1 Linear Interpolation

The simplest method of interpolation is linear interpolation, which basically encompasses drawing a line
between each consecutive measured data point. Then, to estimate any intermediate value, you just find
that point on those lines. Note that linear interpolation doesn’t draw one line that fits all of the data

8

points. It draws many small lines that connect every consecutive point. Thus, each measured data point
is the endpoint of a line.

To perform linear interpolation in Matlab, you use the interp1 function. Note that the last character
in the function’s name is the number ‘one,’ not the letter ‘L.’ The interp1 function requires 3 input ar-
guments: a vector containing the x points you measured, a vector containing the y points you measured,
and a third vector containing the new x values for which you want to estimate the values of y points. The
function returns a vector of estimates for those y values.

The example below shows 5 ‘measured’ data points, stored as x and y. We then use interp1 to esti-
mate y values for new x values from 1 to 5, in intervals of 0.1. Below, you can see the resulting plot,
in which the measured points are simply O’s, whereas the lines connecting those points are actually the
interpolated values. Note that the interpolated lines go through each of the measured data points.
x = 1:5;
y = [2 6 6.2 7.4 10];
newx = 1:0.1:5;
newy = interp1(x,y,newx);
plot(x,y,’O’,newx,newy)

5.2 Cubic Spline Interpolation

Instead of drawing lines between points, you sometimes instead want to draw curves that snake through
each of those points. This method of using curves to smoothly connect points is known as cubic spline
interpolation and is used extensively in computer graphics (i.e. keyframe animation), image processing,
and motion control for robots.

In cubic spline interpolation, we are essentially creating curves Ax3 +Bx2 +Cx+D between each adjacent
set of 2 measured points. Thus, n data points will result in n-1 different curves. To calculate the coeffi-
cients for each of these points analytically, we use three different conditions for each polynomial. Recall
that each curve connects two adjacent data points:

• The polynomial must pass through both of its endpoints (the two measured data points it connects).

• The slopes (first derivatives) of adjacent polynomials must be equal in order for the curve to be
smooth.

• The curvature (second derivatives) of adjacent polynomials must be equal in order for the curve to
be smooth.

9

This method takes quite a while by hand. Thankfully, Matlab does it for you using the spline function. As
with interp1, you pass the spline function a vector containing the measured x points, a vector containing
the measured y points, and a vector containing all of the new x points for which you wish to estimate y.

The example below shows the same 5 ”measured” data points as before, stored as x and y. We then
use spline to estimate y values for x values from 1 to 5, in intervals of 0.1. Below, you can see the resulting
plot, in which the measured points are simply O’s, whereas the curves connecting those points are actually
the interpolated values. Note that the curves smoothly connect each of the measured data points.
x = 1:5;
y = [2 6 6.2 7.4 10];
newx = 1:0.1:5;
newy = spline(x,y,newx);
plot(x,y,’O’,newx,newy)

6 Curve Fitting

Rather than taking our measured data points and estimating values for other x points in between our
measured values, we sometimes want to calculate a ”line or curve of best fit” for our data. Oftentimes, the
line or curve of best fit won’t pass through most, or even any, of the points. How then do we determine
best fit? In the simplest cases, we use a method called least squares regression:

6.1 Least Squares Regression

We define the residuals of a fitted line or polynomial to be the vertical distances between the line/polynomial
and each data point. The idea of least squares regression is to determine the line (or polynomial) that
minimizes the sum of the squares of the residuals, hence the name ”least squares.” This method makes
intuitive sense for 2 major reasons:

We need to take the absolute value of the residuals before summing them; equivalently, we can raise them
to an even numbered power. Otherwise, the residuals of points that are above the fitted line and points
that are below the fitted line will cancel each other out.

Minimizing the sum of the squares, rather than minimizing the sum, avoids having points that are very far
away from the line. In fact, given 4 points, minimizing just the sum would make all three examples in the
graphic below equally valid as fitted lines. In essence, passing through 2 of the data points (and thus being
a distance of, say, x away from the 2 other points) is as valid as splitting the difference between all of the
points (and thus being a distance of x/2 away from each of the 4 points). Since we want to find a trend

10

for the data, the third example in this illustration is the line we’d want since it best characterizes all of
the data points. Therefore, we want to minimize the squares of the residuals.

6.2 Fitting to a Line Or Polynomial

To calculate a line or polynomial of best fit, we use the polyfit function. The polyfit function takes as input
vectors of the x points and y points, and the degree of the polynomial. It returns a vector containing the
coefficients of the polynomial, from the coefficient of the highest degree term to the coefficient of the lowest
degree term.

x = [1 2 3 4 5];
y = [9 22 41 66 97];
coeffs = polyfit(x,y,2)

%%% We find that
>>coeffs =

3.0000 4.0000 2.0000

This answer indicates that the polynomial of best fit is 3 ∗ x2 + 4 ∗ x + 2.

6.2.1 Polyval

Since polyfit returns a vector containing coefficients, you might wonder how to efficiently calculate other
points from those coefficients. There is a function called polyval that takes two input arguments: a vector
containing the coefficients of a polynomial (from greatest to least degree), plus a vector of all the x points
at which you’d like to evaluate that polynomial.

As a simple example, let’s first use polyval to plot y = x2 + 3x + 2:
x = 1:0.1:10;
y = polyval([1 3 2],x);
plot(x,y)

In the fairly complex example below, we create ”noisy” data by adding random numbers between -1.5
and 1.5 to our y points. We use polyfit to calculate the coefficients of a first degree polynomial that best
fits this noisy data, and use polyval to calculate the ”idealized” y points. We plot both our original, noisy
data points, and the line that polyfit finds on the same graph:
%%% I already made vectors x and y of data points, where y was noisy
%%% (In other words, y randomly varied to be too high or low)
coeffs = polyfit(x,y,1);
yfit = polyval(coeffs,x);
plot(x,y,’X’,x,yfit)
%%% display the noisy points as X’s, idealized points as lines

11

7 Fitting To More Complicated Functions

Now you know how to find the line of best fit for some data points if they are linearly related. You
can use this fact, along with the idea of ”linearizing data”, to find more complicated relationships.
”Linearizing” means making a few substitutions for variables, which result in an equation for a line.
Note that ”linearization” has some pretty complex ramifications about what it does to your assump-
tions about (and ability to determine) the experimental error of your data– if you’re interested, see
http://en.wikipedia.org/wiki/Nonlinear_regression

7.1 Mathematical Derivations

In a number of scientific processes, y and x are exponentially or logarithmically related i.e. y=exp(x) or
vice versa. However, it’s sometimes hard when looking at a graph to determine whether or not there is an
exponential relationship, or what sort of exponential relationship exists. Matlab contains alternatives to
the plot function that display exponential values for one or both axes, which is equivalent to taking the
logarithm of x, y, or both x and y.

7.1.1 Logarithmic Data

If your data has logarithmic relationship of the form y = K ∗log(x)+C, it will look like a straight line when
you plot the y values vs. the logarithm of the x values. (Note that this doesn’t imply that all data that
looks straight when plotted in this manner is necessarily logarithmically related, but that a logarithmic
function roughly FITS the data points that are available).

To rephrase this point in Matlab-specific terms, logarithmic data will appear straight if you plot(log(x),y)).
(Alternatively, you could have replaced this plot function with semilogx(x,y), which makes the graph look
the same by creating an exponential x axis). Why does taking the log of the x points make the graph look
straight?

y = K ∗ log(x) + C
SUBSTITUTE: x2 = log(x)
y = K ∗ x2 + C, which is linear

12

7.1.2 Exponential Data

If you data has an exponential relationship of the form y = C ∗ eKx, plotting the logarithm of the y values
vs. the x values will look like a straight line. To rephrase this point in Matlab-specific terms, logarith-
mic data will appear straight if you plot(x,log(y)). (Alternatively, you could have replaced this plot
function with semilogy(x,y), which makes the graph look the same by creating an exponential y axis). Why?

y = C ∗ eKx

Take the natural log of both sides of the equation:
log(y) = log(C ∗ eKx)
log(y) = log(eKx) + log(C)
log(y) = K ∗ x + log(C)
SUBSTITUTE: y2 = log(y) AND C2 = log(C)
y2 = K ∗ x + C2, which is linear
Solve for the coefficiencts K and C2;
Remember that C = eC2 !!!

Here’s a semilogy plot in action:
x = linspace(1,20,100);
y = 5*exp(x);
semilogy(x,y)

7.1.3 Power Function Data

If you data has a power relationship of the form of the form y = C ∗ xK , plotting the logarithm of the y
values vs. the logarithm of the x values will look like a straight line. Note that you might initially think
that power functions are merely degree K polynomials and could just be solved using polyfit. However,
consider the cases where K is not an integer or where you’re trying to determine K from the data points
and thus don’t know what degree polynomial to specify for the regression.

To rephrase this point in Matlab-specific terms, power function data will appear straight if you plot(plot(x),log(y)).
(Alternatively, you could have replaced this plot function with loglog(x,y), which makes the graph look the
same by creating exponential x and y axes). Why?

y = C ∗ xK

Take the natural log of both sides of the equation:
log(y) = log(C ∗ xK)
log(y) = log(C) + log(xK)
log(y) = K ∗ log(x) + log(C)
SUBSTITUTE: x2 = log(x), y2 = log(y), and C2 = log(C)
y2 = K ∗ x2 + C2, which is linear
Solve for the coefficiencts K and C2;
Remember that C = eC2 !!!

13

7.2 Calculating The Coefficients

7.2.1 plot(log(x),y) Straight = Logarithmic Data

If the plot(log(x),y) plot looks linear, recall that y = K ∗ log(x)+C describes the data, and we’ve linearized
it (in the previous section) to be y = K ∗x2 + C by substituting x2 = log(x). Thus, find the line of best fit
of the log(x) points and y points, which returns [K C], and then use those coefficients to write the equation
y = K ∗ log(x) + C:

plot(log(x),y); % looks straight
coeffs = polyfit(log(x),y,1);
K = coeffs(1)
C = coeffs(2)

7.2.2 plot(x,log(y)) Straight = Power Function Data

If the plot(x,log(y)) plot looks linear, recall that y = C ∗ eKx describes the data, and we’ve linearized it (in
the previous section) to be y2 = K ∗ x + C2 by substituting y2 = log(y) AND C2 = log(C). Thus, find the
line of best fit of the x points and log(y) points, which returns [K C2]. Calculate C = eC2 and then use K
and C to write the equation y = C ∗ eKx:

plot(x,log(y)); % looks straight
coeffs = polyfit(x,log(y),1);
K = coeffs(1)
C = exp(coeffs(2))

7.2.3 plot(log(x),log(y)) Straight = Exponential Data

If the plot(log(x),log(y)) plot looks linear, recall that y = C ∗xK describes the data, and we’ve linearized it
(in the previous section) to be y2 = K ∗x2 +C2 by substituting x2 = log(x), y2 = log(y), and C2 = log(C).
Thus, find the line of best fit of the log(x) points and log(y) points, which returns [K C2]. Calculate
C = eC2 and then use K and C to write the equation y = C ∗ xK :

plot(log(x),log(y)); % looks straight
coeffs = polyfit(log(x),log(y),1);
K = coeffs(1)
C = exp(coeffs(2))

14

