
14:440:127– Introduction to Computers for Engineers

Notes for Lecture 4- Exam 1 Review

Rutgers University, Fall 2009 Instructor- Blase E. Ur

1 Images

• Key Idea 1: A grayscale image is a 2-D matrix where each matrix element represents the
intensity (whiteness) of that pixel. Using image, black is 0, white is 64, and everything in
between is a shade of gray. Using imagesc, the smallest number is black, the largest number
is white, and everything in between is scaled accordingly. Using either function to display the
image, make sure to say colormap gray ;

• Key Idea 2: x = imread(’marksanchez.jpg’) reads the image marksanchez.jpg into the
matrix x.

• Key Idea 3: Color images are 3 dimensional matrices, which have rows, column, and layers (1
= red, 2 = green, 3 = blue. RGB, get it?). The values for each pixel range from 0 to 1.

• Key Idea 4: For a color image, the following code applies a motion blur and displays the
blurred image. If you replace ‘motion’ with ‘gaussian’, you get a gaussian blur. Replace it
with ‘sobel’, and you find the edges of an image.

originalcolor = imread(’color.jpg’);

h2 = fspecial(’motion’);

newcolor = imfilter(originalcolor,h2);

imagesc(newcolor)

2 Sound System (gonna bring me back up)

• Key Idea 1: Sound is represented as a vector of sound wave amplitudes. These amplitudes
are ‘sampled’ every specified period i.e. 44.1khz (44,100 times a second) for most audio cds.

• Key Idea 2: [y f] = wavread(’soulja.wav’); reads in a wav file. y is the vector of
amplitudes. f is the sampling rate (a single number).

• Key Idea 3: To play sound, create an audioplayer object i.e.
p = audioplayer(SOMEVECTOR, THESAMPLINGRATE) and then say play(p) or stop(p)

• Key Idea 4: You can filter i.e. high pass (only high sounds can pass through the filter) or low
pass (only low, bassy sounds can pass through the filter) as follows. This is a high pass filter

1

with a 1000 hz cut-off frequency.:

[y f] = wavread(’soulja.wav’);

[b a] = butter(10,1000/(f/2),’high’);

y2 = filtfilt(b,a,y);

p = audioplayer(y2,f);

play(p)

%% wait a bit

stop(p)

3 Review- Basics of Matlab

• Key Idea 1: The names of m-files and of variables cannot contain spaces, must start with a
letter, and can only contain letters, numbers, and the underscore.

• Key Idea 2: The clear command erases the contents of all variables that are currently set.
In contrast, the clc command gets rid of all outputs on the screen, but doesn’t change any
variables.

• Key Idea 3: The first place Matlab looks for an m-file that you refer to is in your current
directory. The next place it will look is going down the list of directories in your path. On
the exam, you’ll probably want to set the current directory to be the Windows Desktop.
We’ll show you how to do this (the exam accounts block the normal way).

4 Review- Relational and Logical Operators

• Key Idea 1: The relational operators are > , >= , < , <= , == , ~=. Notice that those
last two operators signify ”is it equal to” and ”is it UNequal to”, respectively. Each of these
operators returns either 0 (false) or 1 (true).

• Key Idea 2: 0 is false. 1 and all other non-zero values are true.

• Key Idea 3: To connect two or more statements, each of which is true or false, use the logical
operators: & (AND) is true only if the statement before it AND the statement after it are
both true. | (OR) is true if either the statement before it OR the statement after it is true.
~ (NOT) reverses true and false. ~1 is false, whereas ~0 is true.

• Key Idea 4: If you use relational operators with a vector/matrix and a scalar (single value),
you get a logical vector/matrix (full of 1’s and 0’s) back. For instance, if you have a 1x15
vector V, and say V >= 15, you get back a 1x15 vector full of 1’s and 0’s, identifying whether
each element meets that condition. If you use relational operators with two vectors or matrices
of equal size, you again get back a vector/matrix of 1’s and 0’s.

5 Review- Conditional Statements

5.1 If

• Key Idea 1: Conditional statements let you choose a course of action from a bunch of possi-
bilities by testing whether statements are true or false.

2

• Key Idea 2: An If Statement begins with if(condition), where the condition evaluates to true
or false. If the condition is true, Matlab executes the statements following the if and preceding
end. If the condition is not true, Matlab skips those statements.

• Key Idea 3: If the first condition is not true, you can follow with an else statement. You
can’t write any condition after else. If the original condition is false, Matlab executes the
statements following else.

• Key Idea 4: If you want to have a bunch of possible courses of action, you can have elseif
statements. First, you’ll have an if condition, then 0 or more elseif conditions, and then you
might (or might not) have an else. Going down the list of conditions, Matlab executes the
statements following the first condition that is true, and it skips the rest. There is only a
single end, all the way at the bottom.

x = input(’Enter an integer ’);

if(x~=fix(x))

disp(’You didn’t enter an integer’)

elseif(x<0)

disp(’You entered a negative integer’)

elseif(x==0)

disp(’You entered zero’)

elseif(rem(x,2)==0)

disp(’You entered a positive, even integer’)

else

disp(’You entered a positive, odd integer’);

end

5.2 Switch

• Key Idea 1: Instead of using if statements, if you have a single variable that takes on a small
number of discrete values, you can use switch case.

• Key Idea 2: Start off by typing switch VARIABLEname.

• Key Idea 3: Then, for each value, type case VALUE i.e case 5. Don’t put something like
case x==5, you’ve already specified the variable in the switch statement. That would give
you an error.

• Key Idea 4: An if statement uses else to capture all other possibilities. A switch statement
uses otherwise.

• Key Idea 5: End a switch case statement with end.

• Key Idea 6: To test a couple of possible values in a single case, surround those values by
squigly braces, i.e. case {5,6,7} will test if the variable is 5, 6, or 7.

3

school = input(’enter your school number ’);

switch school

case 14

disp(’engineer. the best’)

otherwise

disp(’LOSER!’)

end

6 Review- Built-In Math Functions

Matlab includes many built-in functions for math operations. Here are a number of the most
important ones:

sqrt(5) nthroot(27,3) sin(pi) sind(75) log(5) log10(5) exp(5)

rem(15,2) factor(15) factorial(15) primes(100) isprime(101)

round(5.3) % (.5 or greater rounds towards greater magnitude)

fix(5.3) % towards 0

floor(5.3) % towards -inf ceil(5.3) % towards +inf

• Key Idea 1: The trig functions assume input in radians. Use the ’d’ functions (i.e. sind())
if the input is in degrees.

• Key Idea 2: The log function is the natural log, base e. The logarithm base 10 is the log10
function.

• Key Idea 3: The factor function returns a vector of the primes factors of the input number.
The primes function returns a vector of all prime numbers between 1 and the input number.
The isprime function returns, true or false, if the input number is prime.

7 Review- Inputs / Outputs

• Key Idea 1: The input function lets you get input from a user. A typical call would be
someVariable = input(’Display this on screen’). Whatever the user types is stored in someVari-
able.

• Key Idea 2: The disp function displays its input argument to the screen, and then automati-
cally skips to the next line.

• Key Idea 3: The fprintf function displays its input argument to the screen, but does not
automatically go to the next line. To do this, use the \n character inside the string to be
displayed. You can quite literally use \n as a character– \n\n\n is the equivalent of hitting
enter thrice in a word processor.

• Key Idea 4: You can insert values into an fprintf statement by using placeholders inside the
character string that will be displayed. Use %s if the placeholder will be replaced by text (a
character string) and %f if the placeholder will be replaced by a number.

• Key Idea 5: Following the display string, type the names of variables containing values (or
values themselves) that should replace the placeholders, in the same order as the placeholders
i.e. fprintf(’first the string %s and then the number %f \n’, ’hello’, 5).

4

• Key Idea 6: If you instead use the placeholder %.2f for numbers, the number will be rounded
(as if using the round function), to 2 decimal places in this example.

8 Review- Vectors and Matrices

8.1 Creating Them

• Key Idea 1: To create a row vector, enclose a bunch of numbers in square brackets i.e.
x = [5 7 3].

• Key Idea 2: To create a matrix or column vector, use a semicolon within the square brackets
to skip to the next line i.e. x = [5 ; 7 ; 3].

• Key Idea 3: Use the colon operator from, say, 1 : 10 , to create a vector of points from 1 to
10, spaced by 1.

• Key Idea 4: Use the colon operator from, say, 1 : 0.02 : 10 , to create a vector of points
from 1 to 10, spaced by 0.02.

• Key Idea 5: Use the linspace function, say with linspace(1,5,100), to create a vector of 100
points evenly spaced between 1 and 5. Note that the colon operator specifies the spacing, and
that’s the middle number, whereas linspace specifies how many points are in the vector, and
that’s the final number.

• Key Idea 6: The function call ones(5) creates a 5x5 matrix containing 1 as each element,
while ones(5,3) creates a 5x3 matrix containing 1 as each element. The functions zeros (each
element is 0) and eye (for creating the identity matrix) work identically.

• Key Idea 7: Want a matrix containing all the same element, but something that’s not 0 or 1?
For instance, a 4x6 matrix containing only the number 5? Use zeros(4,6)+5 or ones(4,6)*5.

8.2 Accessing Vectors/Matrices

• Key Idea 1: Use a single number. For row and column vectors stored in the variable x, x(5)
gives you the fifth element. This approach also works for a matrix; the elements are numbered
first going down the first column, then going down the second, and so on.

• Key Idea 2: Specify Row,Column. For matrices stored in the variable x, x(3,5) gives you the
element in the third row and fifth column.

• Key Idea 3: Rows come first, followed by columns, when specifying a two number location in
a matrix.

• Key Idea 4: x = M(5) saves a copy of the fifth element of the matrix M to the variable x.
M(5) = 12 sets the fifth element of the matrix M to be 12.

• Key Idea 5: Use the colon operator to specify multiple elements. The statement M(1:3,2:5)
specifies the elements of matrix M that are in Rows 1 through 3 AND columns 2 through 5.
Notice that this will give you a 3x4 matrix.

5

• Key Idea 6: Instead of using the colon operator, just use a vector. (This is the general case
of the previous idea). i.e. M(4,[1 4 6]) is equivalent to [M(4,1) M(4,4) M(4,6)].

• Key Idea 7: A colon by itself means ”all of the...” or ”every”. For instance, M(5,:) gives you
only the fifth row of M, including the elements in every column.

• Key Idea 8: The keyword end means ”the last”. M(5,4:end) specifies the elements of the
matrix M in the fifth row and all of the columns from the fourth through the last.

• Key Idea 9: Turn a matrix into a vector by typing something like M(:) (literally- give me all
the elements of M).

8.3 Vector/Matrix Functions

• Key Idea 1: size(M) returns a 2 element vector containing the number of rows and number
of columns in matrix M. Even better, call this as [r c] = size(M). You often use size with
matrices.

• Key Idea 2: length(M) returns only the larger dimension of M. For instance, if M were either
1x5 or 5x1, length(M) would return 5. You often use length with vectors.

• Key Idea 3: Functions on matrices generally work on each column individually. These func-
tions include sum, prod, max, min, sort, mean, and median.

• Key Idea 4: To find the overall sum, product, etc., use the relevant function twice. i.e.
sum(sum(M)). This works because the innermost sum(M) gives you a vector of the sums in
each column, and the next sum is thus just summing a vector. Note that this method doesn’t
work for median. To successfully find the median, or as an alternative to calling the function
twice, first turn the matrix into a vector i.e. median(M(:)).

• Key Idea 5: If you request two outputs from max or min, the first variable will contain the
value of the maximum/minimum, and the second variable will contain the location in the
vector. You can call this as [a b] = max(M).

• Key Idea 6: The function sortrows alphabetizes a matrix.

• Key Idea 7: When X contains a matrix or vector, a statement like X > 5 returns a matrix
or vector of the same size containing 1s or 0s (trues or falses) for each element. Namely, this
tells you for each element if the condition is true or false.

• Key Idea 8: You can use the matrix of trues and falses to index a vector or matrix. Let’s say
that M is a matrix. The statement M(M>100 & M<200) returns a vector of all elements in
that matrix that are between 100 and 200. However, sum(M>100 & M<200) returns a count
of the number of elements between 100 and 200 since it is summing the logical vector (which
is 1 every time the condition is true for an element).

• Key Idea 9: The find function returns a vector (indexing with the single element method) of
all of the locations where a condition is true. For instance to find all locations in the matrix
M that contain the largest element in the matrix, use find(M = = max(max(M))). As in
the previous idea, you can use this vector of locations to index the matrix M.

6

• Key Idea 10: The transpose function (or apostrophe) swaps the rows and the columns of a
matrix. With a vector, notice that this will turn a row vector into a column vector, and vice
versa.

• Key Idea 11: [x y] = meshgrid(a,b) returns two ‘length(b)’ row by ‘length(a)’ column matrices
x and y, with gradients going horizontally and vertically, respectively. Note that x.*y gives
you every possible product of one element each from the ‘a’ and ‘b’ vectors.

8.4 Vector/Matrix Math

• Key Idea 1: If you have two vectors or matrices of equal size and want to add, subtract,
multiply, divide, or exponentiate the corresponding elements (and get an answer of the same
size as the operands), use the following operators: + , - , .* , ./ , and .^

• Key Idea 2: The operators * , / , and ^ perform matrix multiplication, division, and
repeated multiplication, respectively. In this course, you don’t use those much. In linear
algebra and higher level engineering courses, you use those constantly.

9 Strings Are Vectors; We Need Cell Arrays

• Key Idea 1: A string is a vector of single characters. Thus, [’hi’ ’bye’] gives you the single
string ’hibye’, not a vector of two individual strings.

• Key Idea 2: To store strings inside a ”vector”, use cell arrays. Instead of using square brackets
to create them, use squigly braces i.e. x = { ’hi’ ’bye’ }. To access the elements as
strings, also use squigly braces (in place of parentheses) i.e. disp(x{3}).

• Key Idea 3: You can’t use = = to compare strings. Instead, use the function strcmp. For
instance, strcmp(suit,’black’) will return 1 is the variable suit contains the string ”black”, and
0 if the suit is NOT black... High five!

10 Polynomial Roots, Systems of Equations

• Key Idea 1: Remember that a polynomial can be represented as a vector of its coefficients?
For instance, 5x3 + 6x + 3 can be written as [5 0 6 3].

• Key Idea 2: Use the roots function to find the roots (also called zeros) of the polynomial.
This function returns a vector of the values (both real and imaginary) of x for which y is 0.
For instance, for the polynomial y = 5x3 + 6x + 3, use roots([5 0 6 3]).

• Key Idea 3: Don’t confuse roots and zeros, they are very different functions.

• Key Idea 4: A system of equations describes when you have N equations containing N vari-
ables. Make a matrix A of the coefficients of the equations. Each row should represent an
equation, and each column should represent a particular variable. Then make a column
vector of the what each equation equals (the constant). Then, use left division: A \ B. This
gives you a vector of N elements; these are the values of the variables represented by each
column, in order.

7

Given Example System 1:
x+5y+2z = 2

2x+5y+2z = 4

-6x-2y-z = -6

A = [1 5 2 ; 2 5 2 ; -6 -2 -1]; % coefficients

B = [2 ; 4 ; -6]; % the right-hand side

A \ B

ans =

2.0000

12.0000

-30.0000

This means that x = 2, y = 12, and z = -30.

8

